
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55244 1001

To implement CBPGA for Simplified Large

Data on Hadoop Map Reduce

 Shalini Jain
1
, Prof. Saurabh Kapoor

2

Research Scholar, Computer Science & Engineering Dept, Gyan Ganga Institute of Technology & Sciences,

Jabalpur, (M.P.), India1

Asst. Prof., Computer Science & Engineering Department, Gyan Ganga Institute of Technology & Sciences,

 Jabalpur, (M.P.), India2

Abstract: This paper introduces implementation CBGPA (Cluster Based Parallel Genetic Algo) [1] for simplified large
data on Hadoop Map Reduce. Hadoop is a framework used for processing large amount of data in a parallel and

distributed manner .Its provides the reliability in storing the data and efficient processing system. The two main gears

of Hadoop are the HDFS (Hadoop Distributed File System) and Map Reducing (for processing). Map Reduce is a

programming model which enables parallel processing in a distributed environment. Classify similar objects under the

same group called cluster. Metaheuristic techniques, such as Genetic Algorithms (GAs) [2], It is one important data

mining methods constitute the best alternative to find near-optimal solutions for such problems within a reasonable

execution time and limited resources. To improve efficiency better approach is used called Map Reduce for

Parallelization Genetic Algo(MRPGA)[3][4] by using the features of Hadoop. An analysis of proposed Algo CBPGA

to evaluate performance gains with respect to the current algo MapRedue Word Count [5]. Our proposal aim is to

evaluate both the parallel algo are compared based on speedup the no of processing node on different size of text files

and find the solution within a reasonable time. Parallel implementation of the CBPGA algorithm makes the algorithm
faster and scalable in order to find the optimal solutions while working with large data cluster in a parallel manner.

Index Terms: Big Data, word count, hadoop, mapreduce, cluster ,Parallel Genetic Algorithm.

1. INTRODUCTION

Big data is a term used to address data sets of large sizes.

Such data sets are beyond the possibility to manage and

process within tolerable elapsed time. For such a scenario

parallelization is a better approach .Hadoop Map reduce[6]

is a parallel programming technique build on the

frameworks of Google app engine map reduce. It is used
for processing large data in a distributed environment. It is

highly scalable and can be build using commodity

hardware. Hadoop map reduce splits the input data into

particular sized chunks and processes these chunks

simultaneously over the cluster. It thus reduces the time

complexity for solving the problem by distributing the

processing among the cluster nodes fig 1.

Figure 1 Data Cluster on Hadoop

2. HADOOP MAPREDUCE WORDCOUNT

Hadoop mapreduce is a programming model which uses

the map reduce paradigm for processing. It is inspired by

the Google app engine mapreduce. It allows for huge

scalability by using commodity hardware. Mapreduce uses

HDFS (hadoop distributed file system) which is another

component of hadoop framework for storing and retrieval
of data. The processing time is reduced by splitting the

data set into blocks depending upon the block size. The

block size is usually 64mb or 128mb. This split data is

then processed parallel over the cluster nodes. Mapreduce

thus provides a distributed approach to solve complex and

lengthy problems.

2.1 MAPREDUCE PARADIGM

Mapreduce programming paradigm involves distributed

processing of large data cluster[7] over the cluster. Under

this paradigm the input data is spitted according to the
block size. The data split is performed by the input format.

These splits are assigned a specific key by the record

reader and thus a key, value pair is generated. Key, value

pairs are then subjected to a two phase processing.

This two phase processing comprises of a map phase and a

reduce phase. The architecture of a basic map reduce

paradigm is depicted in figure 2.

The map phase is composed of a mapper or a map(). Map

phase is executed in the mapper of each node.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55244 1002

The reduce phase is composed of a reducer or a

reduce().After receiving the mapped results reducer

performs the summary operations to generate final result.

Figure2 MapReduce Data Flow

MAP PHASE:

 The mapper receives the key-value pairs generated by

the record reader.

 The mapper performs the distributed algorithm to

process the key-value pairs and generates the mapping

results in form of intermediate key-value pairs .

 The intermediate key-value pairs are then passed on to

the reducer.

REDUCE PHASE:

 The mapped results of the mapper are shuffled.

 The shuffled results are then passed on to the

appropriate reducer for further processing.

 Combined output of all the reducers serves as the final

result.

2.2Mapreduce word count

Map Reduce WordCount [8] reads text files and counts the

occurrence of each word. The input is text files and the

output is also text files, each line of which contains a word

and the count of how often it occurred, separated by a tab.

way of running the WordCount program, used here, is

compiling the .java file and creating its jar file and then

executing the program. The program includes Mapper and

Reducer interfaces to provide the map and reduce tasks.

3. EXISTING GENETIC ALGORITHMS

Genetic Algorithm is a nature inspired heuristic approach

used for solving search based and optimization problems.

It belongs to a class of evolutionary algorithms [9]. In GAs

we evolve a population of candidate solutions towards an

optimal solution. GA simulates nature based techniques of

crossover, mutation, selection and inheritance to get to an

optimal solution. Under GA we implement the law of

survival of the fittest to optimize the candidate solutions

The technique of GA progresses in the following manner:

1. Initial population of candidate solutions is created

2. Each individual from the population is assigned a

fitness value using appropriate fitness function

3. Parents are selected by evaluating the fitness

4. Offspring are created using reproduction operators i.e.

crossover, mutation and selection on parents

5. New population is created by selecting offspring based

on fitness evaluation

6. Steps 3,4,5 are repeated until a termination condition is

met

Generally genetic algorithm will find good solutions in

reasonable amount of time, but increases in time to find

solutions if they are applied to harder and bigger

problems. To overcome this problem we will go for
parallel implementation of genetic algorithm.

4. PARALLEL GENETIC ALGORITHMS

In the following sections we discuss some strategies

commonly used for parallelizing GA [10]. Then, we

propose a customized approach to implement Clustering

based parallel GA on hadoop map reduce.

4.1 Parallel implementations
Parallel implementation of GA is realized using two
commonly used models as:

 Coarse-grained parallel GA

 Fine-grained parallel GA

The PGA consists of multiple computing nodes, those

depends on type of PGA used. There are 4 major types of

PGA’s, they are master-slave, coarse-grained, fine-grained

& hierarchical hybrids.

1 Master-Slave GA In Master-Slave GA, one computing

node will be the master and the others are slaves. The
master node is responsible to hold the population and

performs most of the genetic algorithm operations. The

master will assign one or more computing intensive tasks

to slaves by sending one or more chromosomes to them

and it would then wait for the slaves to return their results.

2 Coarse-Grained GA In Coarse-Grained, the population

is divided into computing nodes which have a sub-

population and executes genetic algorithm on its own. The

nodes will exchange chromosomes with each other

ensuring that good solutions can be spread to other nodes.

This exchange can be called as migration where a node

sends its best chromosome to other nodes. The other nodes
which are having the worst chromosomes will be replaced

by the received ones.

3. Fine-Grained GA In Fine-Grained, each computing

node only has a single chromosome and is arranged in a

spatial structure. Here each node communicates only with

other neighboring nodes and the population is the

collection of all the chromosomes in each node. To

execute a genetic operation, a computing node must

interact with its neighbors. The good traits of a superior

individual can be spread to the entire population due to the

overlapping of neighborhoods.
4 Hierarchical hybrids This is the final PGA type which

is structured in two levels. It operates as a coarse-grained

in higher level and as a fine-grained in lower level. Among

the four types of PGA’s, the fine-grained genetic

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55244 1003

algorithm has the highest level of parallelism and also has

a large communication overhead because of high

frequency of interactions between neighboring nodes.

4.2 Proposed Parallel Genetic Algorithm The coarse-

grained genetic algorithm [11] has been chosen for

proposed algorithm. In this PGA implementation, all the

computing nodes randomly create their own subpopulation

and each of them will execute genetic algorithm on its

own. One of the computing nodes will be assigned special

task to gather results from all the other nodes and then
choose the best result as the output of parallel genetic

algorithm. This node is called as the collector node. In

proposed algorithm, each chromosome is encoded as a

series of node id’s that are in the path from source to

destination. The first gene in the chromosome is always

the source and the last gene in the chromosome is always

the destination. Since different paths may have different

number of intermediate nodes, the chromosomes will be of

variable length. However, the maximum length of a

chromosome cannot exceed the total number of nodes in

the network. Any repeated nodes in the chromosome
signify that the path represented by the chromosome

contains a loop and in network routing, any loop should be

eliminated.

5. PROPOSED WORK

Implementation of CBPGA USING HADOOP

MAPREDUCE
In this sub section we propose the format of GA we used

for clustering based problems. Along with this we discuss

our customized approach to exploit Coarse-grained

parallel GA model. This approach successfully
implements GA based clustering on hadoop map reduce.

Crux of this approach lies in performing a two phased

clustering in mapper and then, in the reducer. To begin,

the input data set is split according to the block size by the

input format. Each split is given to a mapper to perform

the First phase clustering. The first phase mapping results

of each mapper are passed on to a single reducer to

perform the Second phase mapper. We thus, are using

multiple mappers and a single reducer to implement our

clustering based parallel GA.

 PGA implementation on Hadoop MapReduce

The main techniques used to parallelize the proposed GA

using MapRedue programming model are (Geronimo et

al., 2012):

 Each iteration of the GA is treated as distinct

MapReduce job

 Multiple Map functions are invoked from multiple

distributed nodes attached to the Hadoop cluster to

parallelize the chromosome fitness evaluation

 A single Reduce function is invoked to collect the
output of all Map functions and run all the genetic

functions such as crossover, mutation, survival

selection and parents selection which are required to

generate a new generation of population

The proposed implemented PGA on MapReduce model

has the following modules (Geronimo et al., 2012):

 A Parallel Genetic Algorithm

 A Master node

 A number of Mapper nodes and a Reducer nodes

 Input Format and Output Format: splits the data for

inputs to the multiple Map functions and stores output

of the Reduce function to Hadoop distributed file

system

The proposed algorithm was evaluated with respect to the

execution time and branch coverage (Geronimo et al.,

2012). The execution time is calculated using system clock

and the total time. The total time comprises of the

following complements:

 InitTime is the total time needed for the Parallel

Genetic Algorithm to initialize a Map function with the

required data (such as SUT instrumented bytecode,

JUnit, test cases)[12]. This information is required to

run the fitness evaluation in every iteration

 EvalTime is the total time taken to evaluate the fitness

of chromosomes

6. CONCLUSION AND FUTURE WORKS

In this paper one of the basic programs of Hadoop, that is,

MapReduce WordCount is executed in a large cluster. The

changes in the size of input files and the number of reduce

tasks affecting the execution time of the program is

studied.

The execution results showed that the time needed by a

WordCount program for execution increases as the size of

the input files is increased. It is observed that although

increasing the size causes an increase in the execution time

of the program, but large number of small files takes

longer to execute as compared to a single larger file. It is

also observed that the increase in time is not proportional

and it decreases as the files are increased in size. Also, an

increase in the number of reducers causes an increase in

the time taken for the completion of WordCount program.

So, we compared it with the parallel genetic algorithm

(PGA) evolving for Hadoop Map Reduce. The progress

shows that, by using the parallel genetic algorithm the
performance of GA operators are effective. Parallel GAs is

well suited for the large size of data sets. The reason

behind the parallel GAs are efficiently and reliability for

solving a problem in a polynomial time in a parallel

manner.

This paper aims at comparing the execution time of

WordCount under varying conditions. The execution time

may vary depend up on the different size of text files and

no. of nodes. the effective structured system lead to the

retrieval of data in minimum time. On the whole, the

configuration of the Hadoop is very important when there

is a need to improve the performance.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 5, May 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.55244 1004

REFERENCES

[1] Big Data Clustering Using Genetic Algorithm CBGPA On Hadoop

Mapreduce Nivranshu Hans, Sana Mahajan, SN Omkar

INTERNATIONAL JOURNAL OF SCIENTIFIC &

TECHNOLOGY RESEARCH VOLUME 4, ISSUE 04, APRIL

2015 ISSN 2277-8616.

[2] A Review on Genetic Algorithm Practice in Hadoop MapReduce

Mrs. C. Sunitha , Ms. I. IJSTE - International Journal of Science

Technology & Engineering | Volume 2 | Issue 5 | November 2015

ISSN (online): 2349-784X.

[3] MRPGA: An Extension of MapReduce for Parallelizing Genetic

Algorithms - Chao Jin, Christian Vecchiola and Rajkumar Buyya.

[4] C. Jin, C. Vecchiola, and R. Buyya, “Mrpga: an extension of

mapreduce for parallelizing genetic algorithms”, in eScience, 2008.

eScience ’08. IEEE Fourth International Conference on, IEEE,

2008, pp. 214–221.

[5] Parallelization of Genetic Algorithms using MapReduce Suman

Saha European Journal of Applied Social Sciences Research

(EJASSR) Vol-2, Issue 1 www.ejassr.org Jan-Mar 2014.

[5] International Journal of Advanced Research in Computer and

Communication Engineering Vol. 4, Issue 5, May 2015 Copyright

to IJARCCE DOI 10.17148/IJARCCE.2015.4542 184 Analysis of

Research Data using MapReduce Word Count Algorithm Manisha

Sahane1, Sanjay Sirsat2, Razaullah Khan3.

[6] International Journal of Advanced Research in Computer Science

and Software Engineering Research Paper Analysis of Bidgata

using Apache Hadoop and Map Reduce Mrigank Mridul,

Akashdeep Khajuria, Snehasish Dutta, Kumar N.

[7] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data

processing on large clusters." Communications of the ACM 51, no.

1 (2008): 107-113.

[8] International Journal of Scientific Development and Research

(IJSDR) www.ijsdr.org 130 HADOOP MAPREDUCE -

WORDCOUNT IMPLEMENTATION 1P. Deepika, 2Prof. G. R.

Ananatha Raman ISSN: 2455-2631 © March 2016 IJSDR | Volume

1, Issue 3 IJSDR1603025

[9] Scaling Genetic Algorithms using MapReduce - Abhishek Verma,

XavierLlor'a, David E. Goldberg, Roy H. Campbell.

[10] Scaling Populations of a Genetic Algorithm for Job Shop

Scheduling Problems using MapReduce - Di-Wei Huang, Jimmy

Lin.

[11] A Framework for Genetic Algorithms Based on Hadoop Filomena

Ferrucci_, M-Tahar Kechadi†, Pasquale Salza_, Federica Sarro‡

arXiv:1312.0086v2 [cs.NE] 15 Dec 2013.

[12] L. Di Geronimo, F. Ferrucci, A. Murolo, and F. Sarro,“A parallel

genetic algorithm based on hadoop mapreducefor the automatic

generation of junit test suites”,in Software Testing, Verification and

Validation (ICST),2012 IEEE Fifth International Conference on,

IEEE,2012, pp. 785–793.

