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Abstract: This paper introduces implementation CBGPA (Cluster Based Parallel Genetic Algo) [1] for simplified large 
data on Hadoop Map Reduce. Hadoop is a framework used for processing large amount of data in a parallel and 

distributed manner .Its provides the reliability in storing the data and efficient processing system. The two main gears 

of Hadoop are the HDFS (Hadoop Distributed File System) and Map Reducing (for processing). Map Reduce is a 

programming model which enables parallel processing in a distributed environment. Classify similar objects under the 

same group called cluster. Metaheuristic techniques, such as Genetic Algorithms (GAs) [2], It is one important data 

mining methods constitute the best alternative to find near-optimal solutions for such problems within a reasonable 

execution time and limited resources. To improve efficiency better approach is used called Map Reduce for 

Parallelization Genetic Algo(MRPGA)[3][4] by using the features of Hadoop. An analysis of proposed Algo CBPGA 

to evaluate performance gains with respect to the current algo MapRedue Word Count [5]. Our proposal aim is to 

evaluate both the parallel algo are compared based on speedup the no of  processing  node on different size of text files 

and find the solution within a reasonable time. Parallel implementation of the CBPGA algorithm makes the algorithm 
faster and scalable in order to find the optimal solutions while working with large data cluster in a parallel manner. 

 

Index Terms: Big Data, word count, hadoop, mapreduce, cluster ,Parallel Genetic Algorithm. 

 

1. INTRODUCTION 

 

Big data is a term used to address data sets of large sizes. 

Such data sets are beyond the possibility to manage and 

process within tolerable elapsed time. For such a scenario 

parallelization is a better approach .Hadoop Map reduce[6] 

is a parallel programming technique build on the 

frameworks of Google app engine map reduce. It is used 
for processing large data in a distributed environment. It is 

highly scalable and can be build using commodity 

hardware. Hadoop map reduce splits the input data into 

particular sized chunks and processes these chunks 

simultaneously over the cluster. It thus reduces   the time 

complexity for solving the problem by distributing the 

processing among the cluster nodes fig 1. 

 

 
Figure 1 Data Cluster on Hadoop 

2. HADOOP MAPREDUCE WORDCOUNT 

 

Hadoop mapreduce is a programming model which uses 

the map reduce paradigm for processing. It is inspired by 

the Google app engine mapreduce. It allows for huge 

scalability by using commodity hardware. Mapreduce uses 

HDFS (hadoop distributed file system) which is another 

component of hadoop framework for storing and retrieval 
of data. The processing time is reduced by splitting the 

data set into blocks depending upon the block size. The 

block size is usually 64mb or 128mb. This split data is 

then processed parallel over the cluster nodes. Mapreduce 

thus provides a distributed approach to solve complex and 

lengthy problems. 

 

2.1 MAPREDUCE PARADIGM  

Mapreduce programming paradigm involves distributed 

processing of large data cluster[7] over the cluster. Under 

this paradigm the input data is spitted according to the 
block size. The data split is performed by the input format. 

These splits are assigned a specific key by the record 

reader and thus a key, value pair is generated. Key, value 

pairs are then subjected to a two phase processing.  

 

This two phase processing comprises of a map phase and a 

reduce phase. The architecture of a basic map reduce 

paradigm is depicted in figure 2.  

 

The map phase is composed of a mapper or a map(). Map 

phase is executed in the mapper of each node.  
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The reduce phase is composed of a reducer or a 

reduce().After receiving the mapped results reducer 

performs the summary operations to generate final result.  

 

 
Figure2 MapReduce Data Flow 

 

MAP PHASE:  

 The mapper receives the key-value pairs generated by 

the record reader.  

 The mapper performs the distributed algorithm to 

process the key-value pairs and generates the mapping 

results in form of intermediate key-value pairs . 

 The intermediate key-value pairs are then passed on to 

the reducer. 
 

REDUCE PHASE:  

 The mapped results of the mapper are shuffled.  

 The shuffled results are then passed on to the 

appropriate reducer for further processing.  

 Combined output of all the reducers serves as the final 

result. 

 

2.2Mapreduce word count 

Map Reduce WordCount [8] reads text files and counts the 

occurrence of each word. The input is text files and the 

output is also text files, each line of which contains a word 

and the count of how often it occurred, separated by a tab. 

way of running the WordCount program, used here, is 

compiling the .java file and creating its jar file and then 

executing the program. The program includes Mapper and 

Reducer interfaces to provide the map and reduce tasks. 

  

3. EXISTING GENETIC ALGORITHMS 

 

Genetic Algorithm is a nature inspired heuristic approach 

used for solving search based and optimization problems. 

It belongs to a class of evolutionary algorithms [9]. In GAs 

we evolve a population of candidate solutions towards an 

optimal solution. GA simulates nature based techniques of 

crossover, mutation, selection and inheritance to get to an 

optimal solution. Under GA we implement the law of 

survival of the fittest to optimize the candidate solutions 

The technique of GA progresses in the following manner:  
 

1. Initial population of candidate solutions is created  

2. Each individual from the population is assigned a 

fitness value using appropriate fitness function  

3. Parents are selected by evaluating the fitness  

4. Offspring are created using reproduction operators i.e. 

crossover, mutation and selection on parents  

5. New population is created by selecting offspring based 

on fitness evaluation  

6. Steps 3,4,5 are repeated until a termination condition is 

met  

Generally genetic algorithm will find good solutions in 

reasonable amount of time, but increases in time to find 

solutions if they are applied to harder and bigger 

problems. To overcome this problem we will go for 
parallel implementation of genetic algorithm.  

 

4. PARALLEL GENETIC ALGORITHMS 

 

In the following sections we discuss some strategies 

commonly used for parallelizing GA [10]. Then, we 

propose a customized approach to implement Clustering 

based parallel GA on hadoop map reduce.  

 

4.1 Parallel implementations  
Parallel implementation of GA is realized using two 
commonly used models as:  

 Coarse-grained parallel GA 

 Fine-grained parallel GA  

 

The PGA consists of multiple computing nodes, those 

depends on type of PGA used. There are 4 major types of 

PGA’s, they are master-slave, coarse-grained, fine-grained 

& hierarchical hybrids. 

 

1 Master-Slave GA In Master-Slave GA, one computing 

node will be the master and the others are slaves. The 
master node is responsible to hold the population and 

performs most of the genetic algorithm operations. The 

master will assign one or more computing intensive tasks 

to slaves by sending one or more chromosomes to them 

and it would then wait for the slaves to return their results. 

2 Coarse-Grained GA In Coarse-Grained, the population 

is divided into computing nodes which have a sub-

population and executes genetic algorithm on its own. The 

nodes will exchange chromosomes with each other 

ensuring that good solutions can be spread to other nodes. 

This exchange can be called as migration where a node 

sends its best chromosome to other nodes. The other nodes 
which are having the worst chromosomes will be replaced 

by the received ones. 

3. Fine-Grained GA In Fine-Grained, each computing 

node only has a single chromosome and is arranged in a 

spatial structure. Here each node communicates only with 

other neighboring nodes and the population is the 

collection of all the chromosomes in each node. To 

execute a genetic operation, a computing node must 

interact with its neighbors. The good traits of a superior 

individual can be spread to the entire population due to the 

overlapping of neighborhoods. 
4 Hierarchical hybrids This is the final PGA type which 

is structured in two levels. It operates as a coarse-grained 

in higher level and as a fine-grained in lower level. Among 

the four types of PGA’s, the fine-grained genetic 
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algorithm has the highest level of parallelism and also has 

a large communication overhead because of high 

frequency of interactions between neighboring nodes.  

 

4.2 Proposed Parallel Genetic Algorithm The coarse-

grained genetic algorithm [11] has been chosen for 

proposed algorithm. In this PGA implementation, all the 

computing nodes randomly create their own subpopulation 

and each of them will execute genetic algorithm on its 

own. One of the computing nodes will be assigned special 

task to gather results from all the other nodes and then 
choose the best result as the output of parallel genetic 

algorithm. This node is called as the collector node. In 

proposed algorithm, each chromosome is encoded as a 

series of node id’s that are in the path from source to 

destination. The first gene in the chromosome is always 

the source and the last gene in the chromosome is always 

the destination. Since different paths may have different 

number of intermediate nodes, the chromosomes will be of 

variable length. However, the maximum length of a 

chromosome cannot exceed the total number of nodes in 

the network. Any repeated nodes in the chromosome 
signify that the path represented by the chromosome 

contains a loop and in network routing, any loop should be 

eliminated. 

 

5. PROPOSED WORK 
 

Implementation of CBPGA USING HADOOP 

MAPREDUCE  
In this sub section we propose the format of GA we used 

for clustering based problems. Along with this we discuss 

our customized approach to exploit Coarse-grained 

parallel GA model. This approach successfully 
implements GA based clustering on hadoop map reduce. 

Crux of this approach lies in performing a two phased 

clustering in mapper and then, in the reducer. To begin, 

the input data set is split according to the block size by the 

input format. Each split is given to a mapper to perform 

the First phase clustering. The first phase mapping results 

of each mapper are passed on to a single reducer to 

perform the Second phase mapper. We thus, are using 

multiple mappers and a single reducer to implement our 

clustering based parallel GA.  

 

 PGA implementation on Hadoop MapReduce  

The main techniques used to parallelize the proposed GA 

using MapRedue programming model are (Geronimo et 

al., 2012):  

 

 Each iteration of the GA is treated as distinct 

MapReduce job  

 Multiple Map functions are invoked from multiple 

distributed nodes attached to the Hadoop cluster to 

parallelize the chromosome fitness evaluation  

 A single Reduce function is invoked to collect the 
output of all Map functions and run all the genetic 

functions such as crossover, mutation, survival 

selection and parents selection which are required to 

generate a new generation of population  

The proposed implemented PGA on MapReduce model 

has the following modules (Geronimo et al., 2012):  

 

 A Parallel Genetic Algorithm  

 A Master node  

 A number of Mapper nodes and a Reducer nodes  

 Input Format and Output Format: splits the data for 

inputs to the multiple Map functions and stores output 

of the Reduce function to Hadoop distributed file 

system  
 

The proposed algorithm was evaluated with respect to the 

execution time and branch coverage (Geronimo et al., 

2012). The execution time is calculated using system clock 

and the total time. The total time comprises of the 

following complements:  

 

 InitTime is the total time needed for the Parallel 

Genetic Algorithm to initialize a Map function with the 

required data (such as SUT instrumented bytecode, 

JUnit, test cases)[12]. This information is required to 

run the fitness evaluation in every iteration  

 EvalTime is the total time taken to evaluate the fitness 

of chromosomes  

 

6. CONCLUSION AND FUTURE WORKS 

 

In this paper one of the basic programs of Hadoop, that is, 

MapReduce WordCount is executed in a large cluster. The 

changes in the size of input files and the number of reduce 

tasks affecting the execution time of the program is 

studied.  

 
The execution results showed that the time needed by a 

WordCount program for execution increases as the size of 

the input files is increased. It is observed that although 

increasing the size causes an increase in the execution time 

of the program, but large number of small files takes 

longer to execute as compared to a single larger file. It is 

also observed that the increase in time is not proportional 

and it decreases as the files are increased in size. Also, an 

increase in the number of reducers causes an increase in 

the time taken for the completion of WordCount program. 
 

So, we compared it with the parallel genetic algorithm 

(PGA) evolving for Hadoop Map Reduce. The progress 

shows that, by using the parallel genetic algorithm the 
performance of GA operators are effective. Parallel GAs is 

well suited for the large size of data sets. The reason 

behind the parallel GAs are efficiently and reliability for 

solving a problem in a polynomial time in a parallel 

manner.  
 

This paper aims at comparing the execution time of 

WordCount under varying conditions. The execution time 

may vary depend up on the different size of text files and 

no. of nodes. the effective structured system lead to the 

retrieval of data in minimum time. On the whole, the 

configuration of the Hadoop is very important when there 

is a need to improve the performance. 
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